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Abstract
We perform a one-parameter family of self-adjoint extensions characterized
by the parameter ω0. This allows us to get generic boundary conditions for
the quantum oscillator on N-dimensional complex projective space (CP N) and
on its non-compact version, i.e., Lobachewski space (LN) in the presence of
a constant magnetic field. As a result, we get a family of energy spectra for
the oscillator. In our formulation the already known result of this oscillator
also belongs to the family. We have also obtained an energy spectrum which
preserves all the symmetries (full-hidden symmetry and rotational symmetry)
of the oscillator. The method of self-adjoint extensions has also been discussed
for a conic oscillator in the presence of the constant magnetic field.

PACS numbers: 03.65.−w, 02.30.Sa, 02.30.Ik

1. Introduction

The quantum oscillator plays a fundamental role in theoretical physics due to its exact
solvability and over-complete symmetry. The study of the oscillator became more interesting
when the Euclidian oscillator was generalized on a curved space with a constant curvature by
Higgs. This generalized oscillator which is known as the Higgs oscillator [1] for the obvious
reason possesses lots of interesting features. For review see [2]. The Euclidian oscillator has
also been generalized on a Kähler space, and the various properties of the system have been
discussed in [3]. In [4], the exact solution of the quantum oscillator in N-dimensional complex
projective space (CP N), Lobachewski space (LN) and related to cones in the presence of
the constant magnetic field has been discussed. The relevance of this system to the higher
dimensional quantum Hall effect makes it interesting. It has been shown that the inclusion of
the constant magnetic field does not break any existing hidden symmetry of the oscillator and
super-integrability and exact solvability.
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But the solution of [4] has been presented in terms of a fixed boundary condition. As
a consequence full symmetry of the energy spectrum has not been obtained. It is however
possible to get generic boundary conditions for the oscillator by making self-adjoint extensions
of the Hamiltonian of the system [4]. Consideration of the generic boundary conditions is not
merely mathematical. It can be shown that the generic boundary conditions help us to get a
complete set of spectra of the Hamiltonian under consideration. In [5], such an issue has been
considered for the quantum-mechanical oscillator on a Kähler conifold in two dimensions, and
it has been shown that the consideration of self-adjoint extensions can help us to get the energy
spectrum, which is degenerate with respect to the orbital and azimuthal quantum numbers.

In our present work, we are going to address this issue for the oscillator defined
on N-dimensional complex projective space (CP N) and on its non-compact version, i.e.,
Lobachewski space (LN) in the presence of a constant magnetic field. We will perform
a one-parameter family of self-adjoint extensions [10] of the initial domain of the radial
Hamiltonian of the harmonic oscillator [4] by the von Neumann method [10]. This will
help us to construct generic boundary conditions. We will show that for a specific value of
the self-adjoint extension parameter ω0 we can recover the known result [4], and for other
values of the extension parameter ω0 we will get other energy spectra which were not known
so far. We will also discuss about the degeneracy of the energy spectrum with respect to
different quantum numbers, which has been possible for considering a one-parameter family
of self-adjoint extensions of the radial Hamiltonian of the oscillator [4].

However, the importance of self-adjointness of a unitary operator is far fundamental. As
we know, the evolution of a quantum system is dictated by a unitary group and the generator
of that group is the Hamiltonian itself. According to Stone’s theorem [10], generators of the
unitary group (in this case Hamiltonian) should be self-adjoint. So, for a non-self-adjoint
operator we should search for a self-adjoint extensions if possible. If the system has many
self-adjoint extensions then different self-adjoint extensions should unveil different physics
for the system.

The paper is organized as follows. In section 2, we discuss the quantum oscillator on
complex projective space (CP N) and Lobachewski space (LN) in a background constant
magnetic field. In section 3, we perform the self-adjoint extensions of the radial Hamiltonian
of the oscillator discussed in the previous section, and we make some observations for some
particular values of the extension parameter ω0. Here, we show that it is possible to retain
complete degeneracy in the energy spectrum (full-hidden symmetry and rotational symmetry).
In section 4, the method of self-adjoint extensions has been discussed for the conic oscillator
in the constant magnetic field. We conclude in section 5.

2. Quantum oscillator on CP N and LN with the background constant magnetic field

The quantum oscillator on complex projective space (CP N) and on Lobachewski space (LN)

with the background constant magnetic field B is defined by the symplectic structure � and
the Hamiltonian Ĥ respectively as

� = dπa ∧ dza + dπ̄a ∧ dz̄a + iBgab̄ dza ∧ dz̄b (2.1)

Ĥ = 1
2gab̄(π̂a ˆ̄πb + ˆ̄πbπ̂a) + ω2gābKāKb, (2.2)

where the metric is of the form

gāb = 2

r2
0

(1 + εzz̄)(δab + εzaz̄b), (2.3)
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and the Kähler potential K and its derivatives Ka , Kā are given by

K = r2
0

2ε
log(1 + εzz̄), ε = ±1,

Ka = ∂K

∂za
= r2

0

2

z̄a

1 + εzz̄
, Kā = ∂K

∂z̄a
= r2

0

2

za

1 + εzz̄
.

(2.4)

The representation of the momentum operators πa and π̄a consistent with the symplectic
structure (2.1) takes the forms

π̂a = −i

(
h̄∂a +

B

2
Ka

)
, ˆ̄πa = −i

(
h̄∂ā − B

2
Kā

)
. (2.5)

In order to investigate the maximum possible energy spectra for the oscillator, let us consider
the spectral problem

Ĥ� = E�, Ĵ 0� = s�, Ĵ2� = j (j + N − 1)�. (2.6)

It is convenient to transform to the 2N -dimensional spherical coordinates (r, φi), where
i = 1, . . . , 2N − 1, r is a dimensionless radial coordinate taking values in the interval [0,∞)

for ε = +1, and in [0, 1] for ε = −1 and φis are appropriate angular coordinates. In this
spherical coordinates the above energy eigenvalue equation in equation (2.6) can be separated
into radial coordinate if we consider the trial wavefunction of the form

� = ψ(r)Dj
s (φi), (2.7)

where D
j
s (φi) is the eigenfunction of the operators Ĵ2, Ĵ0. It can be expressed via 2N -

dimensional Wigner functions, D
j
s (φi) = ∑

mi
cmi

D
j
mi,s(φi), where j,mi denote the total and

azimuthal angular momentum quantum number, respectively,

Ĵ0D
j
s (φi) = sDj

s (φi), (2.8)

Ĵ2Dj
s (φi) = j (j + N − 1)Dj

s (φi), Ĵ3D
j
mi,s

= miD
j
mi,s

, (2.9)

m, s = −j,−j + 1, . . . , j − 1, j j = 0, 1/2, 1, . . . . (2.10)

Separating the differential equation we get the radial eigenvalue equation of the form

H(r)ψ(r) = Eψ(r), (2.11)

where the radial Hamiltonian in equation (2.11) can be written in spherical coordinates as
follows:

H(r) = − h̄2

2r2
0

(1 + εr2)

[
d2

dr2
+

2N − 1 + εr2

r(1 + εr2)

d

dr
+

4j (j + N − 1)

εr2(1 + εr2)

+
ε

(1 + εr2)

(
2s +

µB

ε

)2
− ω2r4

0 r2

h̄2(1 + εr2)2
+

εµ2
B

(1 + εr2)2

]
, (2.12)

where

r = √
zz̄, µB = Br2

0

2h̄
, (2.13)

and we have replaced Ĵ2 and Ĵ0 by their eigenvalues j (j + N − 1) and s, respectively.
We now move to the following section to discuss the self-adjointness of the radial

Hamiltonian H(r) of equation (2.12).
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3. Self-adjointness of the radial Hamiltonian

The effective radial Hamiltonian H(r) of equation (2.12) is formally self-adjoint, but formal
self-adjointness does not mean that it is self-adjoint on a given domain [11]. This operator
H(r) belongs to an unbounded differential operator defined on a Hilbert space. As we have
mentioned in our introduction, we will now perform self-adjoint extensions of the operator
H(r) by von Neumann’s method [10]. But before that let us briefly review here the von
Neumann method for the sake of completeness.

Let us consider an unbounded differential operator T defined over a Hilbert space H
and consider a domain D(T ) ⊂ H for the operator T such that it becomes symmetric
on the domain D(T ) ⊂ H. Note that the operator T is called symmetric or Hermitian if
(T φ, χ) = (φ, T χ)∀φ, χ ∈ D(T ), where (. , .) is the inner product defined over the Hilbert
space H. Let D(T †) be the domain of the corresponding adjoint operator T †. The operator T
is self-adjoint iff T = T † and D(T ) = D(T †).

We now state the criteria of self-adjointness of a symmetric operator T according to the
von Neumann method. We need to find out the deficiency subspaces (it is actually a null
space) D± ≡ Ker(i ∓ T †) and the deficiency indices n±(T ) ≡ dim(D±). Depending upon
n±, T is classified as [10]

(1) T is essentially self-adjoint, if n+ = n− = 0.
(2) T has an n2-parameter(real) family of self-adjoint extensions, if n+ = n− = n 	= 0.
(3) T has no self-adjoint extensions, if n+ 	= n−. In this case T is called maximally symmetric.

We now return to the discussion of our effective radial differential operator H(r). This
operator is symmetric in the domain,

D(H(r)) = {φ(r) : φ(r) = φ′(r) = 0, absolutely continuous,

square integrable over its full range with measure dµ,} (3.1)

where dµ = r2N−1

(1+εr2)2N−1 dr, φ′(r) is the derivative of φ(r) with respect to r. The domain

of the adjoint operator H †(r), whose differential expression is same as H(r) due to formal
self-adjointness, is given by

D†(H(r)) = {φ(r) : absolutely continuous,

square integrable on the half line with measure dµ}, (3.2)

H(r) is obviously not self-adjoint [10], because

D(H(r)) 	= D(H †(r)). (3.3)

So we may ask whether there is any possible self-adjoint extensions [10] for the problem? To
answer this question we need to investigate whether there is any square-integrable solutions
for the differential equations

H(r)†φ± = ± iφ±. (3.4)

The square-integrable solutions of equation (3.4) apart from normalization are given by

φ± =
{

Dt
c−2

2 (1 − t)
b±+a±−c

2 2F1(a
±, b±; c; t), for ε = 1;

Dt
c−2

2 (1 − t)−δ−2a±− c
2 +1

2F1(a
±, b±, c; t) for ε = −1,

(3.5)

where the constants a± = a(±i), b± = b(±i) and c of the Hypergeometric function [12]
2F1(a

±, b±, c; t) are given in the general form as
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a(k) = 1

2

2j + N + εδ −
√

2r2
0 k

εh̄2 + N2 +
ω2r4

0

h̄2 + µ2
B

 ,

(3.6)

b(k) =
{−a(k) + δ + j1 + 1, for ε = 1;
a(k) + δ, for ε = −1;

c = j1 + 1, j1 = 2j + N − 1, δ2 = ω2r4
0

h̄2 +
(

2s +
µB

ε

)2
,

(3.7)

t =


r2

1 + r2
, for ε = 1;

r2, for ε = −1.

The existence of these complex eigenvalues of H(r)† signifies that H(r) is not self-adjoint.
The solutions φ± belong to the null space D± of H(r)† ∓ i, where D± ∈ D†(H). The
dimensions n± of D± are known as deficiency indices and are given by

n± = dim(D±). (3.8)

Since in our case the deficiency indices are n+ = n− = 1, we can get a one-parameter family
of self-adjoint extensions of H(r). The self-adjoint extensions of H(r) are given by H(r)ω0

with the domain D(H(r)ω0), where

D(H(r)ω0) = {ψ(r) = φ(r) + φ+(r) + eiω0φ−(r) : φ(r) ∈ D(H(r)), ω0 ∈ R(mod 2π)}.
(3.9)

The bound state solutions of H(r)ω0 are of the form

ψ(r) =
{

Ct
c−2

2 (1 − t)
b+a−c

2 2F1(a, b; c; t), for ε = 1;
Ct

c−2
2 (1 − t)−δ−2a− c

2 +1
2F1(a, b, c; t), for ε = −1,

(3.10)

where a = a(E), b = b(E), c and t are given in the general form in equations (3.6) and (3.7).
C is the normalization constant. To find out the eigenvalues we have to match the function
ψ(r) with the domain equation (3.9) at r → 0. In the limit r → 0,

ψ(r) →
{

Ct
c−2

2 (1 − t)
b+a−c

2 [�1(a, b, c) + (1 − t)c−a−b�2(a, b, c)], for ε = 1;
Ct

c−2
2 [�1(a, b, c) + (1 − t)1+ c

2 �2(a, b, c)], for ε = −1;
(3.11)

and

φ+(r) + eiω0φ−(r) →
{

Dt
c−2

2 (1 − t)
b+a−c

2 [�̄1 + (1 − t)c−a−b�̄2], for ε = 1;
Dt

c−2
2 [�̄1 + (1 − t)1+ c

2 �̄2], for ε = −1;
(3.12)

where for any three constants m, n and p,�(m, n, p) s are of the form

�1(m, n, p) = �(p)�(p − m − n)�(m + n − p + 1)�(1 − p)

�(p − m)�(p − n)�(n − p + 1)�(m − p + 1)
,

(3.13)
�2(m, n, p) = �(p)�(m + n − p)�(p − m − n + 1)�(1 − p)

�(m)�(n)�(1 − n)�(1 − m)

and

�̄1 = �1(a
+, b+, c) + eiω0�1(a

−, b−, c), �̄2 = �2(a
+, b+, c) + eiω0�2(a

−, b−, c) (3.14)

Now comparing the respective coefficients in equations (3.11) and (3.12) we get the eigenvalue
equation

f (E) ≡ �(a)�(b)�(1 − b)�(1 − a)

�(c − a)�(c − b)�(b − c + 1)�(a − c + 1)
= M

cos(β + ω0/2)

cos(α + ω0/2)
, (3.15)
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-5 -4 -3 -2 -1
c a

-1.15

-1.1

-1.05

-0.95

-0.9

-0.85

f(E)

Figure 1. A plot of equation (3.15) using Mathematica with N = 2, ε = −1, j = 0 (actually
we have taken the limit j → 0, so that equation (3.15) makes sense), δ = 0.001 and energy
range c − a from −5 to 0. The horizontal axis labelled by c − a corresponds to the rhs = 0 of
equation (3.15).

where

M = |�(c − a±)||�(c − b±)||�(b± − c + 1)||�(a± − c + 1)|
|�(a±)||�(b±)||�(1 − a±)||�(1 − b±)| , (3.16)

β = |arg(�(c − a±))| + |arg(�(c − b±))| + |arg(�(b± − c + 1))| + |arg(�(a± − c + 1))|,
(3.17)

α = |arg(�(a±))| + |arg(�(b±))| + |arg(�(1 − a±))| + |arg(�(1 − b±))|. (3.18)

The eigenvalue for the general value of ω0 can be calculated by plotting the graph of
equation (3.15). We have plotted the graph of equation (3.15) in figure 1 and figure 2 for getting
a complete understanding of the behaviour of the spectrum with respect to the self-adjoint
extension parameter ω0. But we can immediately calculate the eigenvalue analytically at least
for some values of the extension parameter ω0 in the boundary condition. So to appreciate
constructing generalized boundary condition we now investigate some special cases.

3.1. Case 1

When the right-hand side of equation (3.15) is infinity, we get a = ±n or b = ±n. a = −n

or b = −n leads to the eigenvalue, already calculated in [4],

En,j,s = εh̄2

2r2
0

[
(2n + 2j + N + εδ)2 −

(
ω2r4

0

h̄2 + N2 + µ2
B

)]
. (3.19)

The radial quantum number is given by

n =
{

0, 1, . . . ,∞ for ε = 1
0, 1, . . . , nmax = [δ/2 − j − 1] for ε = −1.

(3.20)

For a = +n and b = +n the energy spectrum will be the same expression (3.19), with n
replaced by −n.
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-5 -4 -3 -2 -1
a

0.999985

0.99999

0.999995

1.00001

1.00001

1.00002

f(E)

Figure 2. A plot of equation (3.15) using Mathematica with N = 2, ε = +1, j = 0 (actually we
have taken the limit j → 0, so that equation (3.15) makes sense), δ = 1.2 and energy range a from
−5 to 0. The horizontal axis labelled by a corresponds to the rhs 	= 0 of equation (3.15).

3.2. Case 2

We can also make the right-hand side of equation (3.15) zero, which gives us c − b = ±n or
c − a = ±n. For c − b = +n, the energy spectrum becomes

En,j,s = εh̄2

2r2
0

[
(2n − 2j − N + δ)2 −

(
ω2r4

0

h̄2 + N2 + µ2
B

)]
, (3.21)

for c − b = −n, n in (3.21) will be replaced by −n and the radial quantum number n is given
in (3.20). For c − a = n,

En,j,s = εh̄2

2r2
0

[
(2n − 2j − N + εδ)2 −

(
ω2r4

0

h̄2 + N2 + µ2
B

)]
. (3.22)

For c − a = −n, n in (3.22) will be replaced by −n and the radial quantum number n is given
in (3.20).

3.3. Case 3

For c − b = +n + b and c − a = +n + a, we get degenerate (degenerate with respect to the
orbital quantum number j ) eigenvalue

En,s = h̄2

2r2
0

[
(n + δ)2 −

(
ω2r4

0

h̄2 + N2 + µ2
B

)]
, for ε = 1. (3.23)

For c − b = −n + b and c − a = −n + a, we get

En,s = − h̄2

2r2
0

[
(n + δ)2 −

(
ω2r4

0

h̄2 + N2 + µ2
B

)]
, for ε = −1. (3.24)

3.4. Case 4

Even if, we can get the totally degenerate eigenvalue when c − b = c − a ± n and the form
of the spectrum is given by

En = h̄2

2r2
0

[
n2 −

(
ω2r4

0

h̄2 + N2 + µ2
B

)]
, for ε = +1. (3.25)
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For a + b + c = ±n, we get

En = − h̄2

2r2
0

[
n2 −

(
ω2r4

0

h̄2 + N2 + µ2
B

)]
, for ε = −1. (3.26)

4. Self-adjointness of the conic oscillator in a constant magnetic field

The study of self-adjointness of the conic oscillator in a constant background magnetic field is
just a straightforward generalization of what we have done so far. The ν− parametric family
of cones over CP N and LN is defined by the Kähler potential

K = r2
0

2ε
log[1 + ε(zz̄)ν], ν > 0; ε = ±1. (4.1)

The metric is given by

gab̄ = νr2
0 (zz̄)ν−1

2(1 + ε(zz̄)ν)

(
δab − 1 − ν + ε(zz̄)ν

zz̄(1 + ε(zz̄)ν)
z̄azb

)
. (4.2)

The Hamiltonian of the system is the same as equation (2.2). After doing some algebra on the
energy eigenvalue equation of equation (2.6), we can arrive at the radial Hamiltonian given by
equation (2.12) with

δ2 = ω2r4
0

h̄2 +

(
2
s

ν
+

B0r
2
0

2εh̄

)2

(4.3)

and

j 2
1 = (2j + N − 1)2

ν
+

ν − 1

ν

[
(N − 1)2 − 4s2

ν

]
. (4.4)

One can also perform the self-adjoint extension of the radial Hamiltonian of this system. The
procedure is exactly the same as what we have done above. Note that the result will reduce to
the result of [5] for the magnetic field B = 0 and N = 2.

5. Discussion

The issue of self-adjointness, as pointed out in the introduction, is of paramount importance
in the quantum system due to Stone’s theorem. It guarantees the spectrum to be the subset of
the real line. Otherwise in principle the spectrum could be the subset of the complex plane.
The complex eigenvalue could have importance in the dissipative system. However, in our
work we have concentrated on bound states of the quantum oscillator on complex projective
space (CP N) and Lobachewski space (LN) in the background constant magnetic field. So the
Hamiltonian self-adjointness is must in our case.

We have obtained a generic boundary condition for the harmonic oscillator on CP N(LN)

in the constant magnetic field [4], and as a result we have obtained a ω0-parameter family
of an energy eigenvalue given by equation (3.15). There exists an energy spectrum at each
point on the circle eiω0 . We have shown that this generic boundary condition can restore
the angular momentum degeneracy in the energy spectrum for a fixed value of the extension
parameter ω0. In subsection (3.3), we have obtained the eigenvalue which is independent of
the orbital angular momentum quantum number j . In subsection (3.4), we have obtained the
eigenvalue which is independent of both the orbital and azimuthal quantum numbers. For
consistency checking, we have also recovered the result of [4] in subsection (3.1). Not only
this, we have also shown that it allows us to obtain more solutions for different values of the



The quantum oscillator on complex projective space (Lobachewski space) 3547

extension parameter ω0; for example we have calculated a case in subsection (3.2). We have
discussed the conic oscillator in a constant magnetic field background from the perspective of
self-adjointness of the system. It is a straightforward extension of what we have done for the
oscillator on CP N(LN) in the constant magnetic field.
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